An extension of the notion of classical equivalence of equivalence in the Batalin--(Fradkin)--Vilkovisky (BV) and (BFV) framework for local Lagrangian field theory on manifolds possibly with boundary is discussed. Equivalence is phrased in both a strict and a lax sense, distinguished by the compatibility between the BV data for a field theory and its boundary BFV data, necessary for quantisation. In this context, the first- and second-order formulations of non-Abelian Yang--Mills and of classical mechanics on curved backgrounds, all of which admit a strict BV-BFV description, are shown to be pairwise equivalent as strict BV-BFV theories. This in particular implies that their BV-complexes are quasi-isomorphic. Furthermore, Jacobi theory and one-dimensional gravity coupled with scalar matter are compared as classically-equivalent reparametrisation-invaria