We present a large suite of cosmological simulations, the FORGE (F-of-R Gravity Emulator) simulation suite, which is designed to build accurate emulators for cosmological observables in galaxy clustering, weak gravitational lensing and galaxy clusters, for the $f(R)$ gravity model. The total of 200 simulations explore the cosmological parameter space around the Planck(2018) cosmology with a Latin hypercube, for 50 combinations of $bar{f}_{R0}$, $Omega_m$, $sigma_8$ and $h$ with all other parameters fixed. For each parameter combination, or node, we ran four independent simulations, one pair using $1024^3$ particles in $500 h^{-1} Mpc$ simulation boxes to cover small scales, and another pair using $512^3$ simulation particles in $1500 h^{-1} Mpc$ boxes for larger scales. Each pair of initial conditions are selected such that sample variance on large scales is minimised on average. In this work we present an accurate emulator for the matter power spectrum in $f(R)$ gravity trained on FORGE. We have verified, using the cross-validation technique, that the emulator accuracy is better than $2.5%$ for the majority of nodes, particularly around the center of the explored parameter space, up to scales of $k = 10 h Mpc^{-1}$. We have also checked the power spectrum emulator against simulations which are not part of our training set and found excellent agreement. Due to its high accuracy on small scales, the FORGE matter power spectrum emulator is well suited for weak lensing analysis and can play a key tool in constraining $f(R)$ gravity using current and future observational data.