Optimal Vaccine Allocation for Pandemic Stabilization


الملخص بالإنكليزية

How to strategically allocate the available vaccines is a crucial issue for pandemic control. In this work, we propose a mathematical framework for optimal stabilizing vaccine allocation, where our goal is to send the infections to zero as soon as possible with a fixed number of vaccine doses. This framework allows us to efficiently compute the optimal vaccine allocation policy for general epidemic spread models including SIS/SIR/SEIR and a new model of COVID-19 transmissions. By fitting the real data in New York State to our framework, we found that the optimal stabilizing vaccine allocation policy suggests offering vaccines priority to locations where there are more susceptible people and where the residents spend longer time outside the home. Besides, we found that offering vaccines priority to young adults (20-29) and middle-age adults (20-44) can minimize the cumulative infected cases and the death cases. Moreover, we compared our method with five age-stratified strategies in cite{bubar2021model} based on their epidemics model. We also found its better to offer vaccine priorities to young people to curb the disease and minimize the deaths when the basic reproduction number $R_0$ is moderately above one, which describes the most world during COVID-19. Such phenomenon has been ignored in cite{bubar2021model}.

تحميل البحث