Adjacency eigenvalues of graphs without short odd cycles


الملخص بالإنكليزية

It is well known that spectral Tur{a}n type problem is one of the most classical {problems} in graph theory. In this paper, we consider the spectral Tur{a}n type problem. Let $G$ be a graph and let $mathcal{G}$ be a set of graphs, we say $G$ is textit{$mathcal{G}$-free} if $G$ does not contain any element of $mathcal{G}$ as a subgraph. Denote by $lambda_1$ and $lambda_2$ the largest and the second largest eigenvalues of the adjacency matrix $A(G)$ of $G,$ respectively. In this paper we focus on the characterization of graphs without short odd cycles according to the adjacency eigenvalues of the graphs. Firstly, an upper bound on $lambda_1^{2k}+lambda_2^{2k}$ of $n$-vertex ${C_3,C_5,ldots,C_{2k+1}}$-free graphs is established, where $k$ is a positive integer. All the corresponding extremal graphs are identified. Secondly, a sufficient condition for non-bipartite graphs containing an odd cycle of length at most $2k+1$ in terms of its spectral radius is given. At last, we characterize the unique graph having the maximum spectral radius among the set of $n$-vertex non-bipartite graphs with odd girth at least $2k+3,$ which solves an open problem proposed by Lin, Ning and Wu [Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270].

تحميل البحث