The primitive equations are fundamental models in geophysical fluid dynamics and derived from the scaled Navier-Stokes equations. In the primitive equations, the evolution equation to the vertical velocity is replaced by the so-called hydrostatic approximation. In this paper, we give a justification of the hydrostatic approximation by the scaled Navier-Stoke equations in anisotropic spaces $L^infty_H L^q_{x_3} (Torus^3)$ for $q geq 1$.