We find a new homogeneous solution to the Einstein-Maxwell equations with a cosmological term. The spacetime manifold is $R times S^3$. The spacetime metric admits a simply transitive isometry group $G = R times SU(2)$ of isometries and is of Petrov type I. The spacetime is geodesically complete and globally hyperbolic. The electromagnetic field is non-null and non-inheriting: it is only invariant with respect to the $SU(2)$ subgroup and is time-dependent in a stationary reference frame.