Pion to photon transition form factors with basis light-front quantization


الملخص بالإنكليزية

We obtain the distribution amplitude (DA) of the pion from its light-front wave functions in the basis light-front quantization framework. This light-front wave function of the pion is given by the lowest eigenvector of a light-front effective Hamiltonian consisting a three-dimensional confinement potential and the color-singlet Nambu--Jona-Lasinion interaction both between the constituent quark and antiquark. The quantum chromodynamics (QCD) evolution of the DA is subsequently given by the perturbative Efremov-Radyushkin-Brodsky-Lepage evolution equation. Based on this DA, we then evaluate the singly and doubly virtual transition form factors in the space-like region for $pi^0rightarrow gamma^*gamma$ and $pi^0rightarrow gamma^*gamma^*$ processes using the hard-scattering formalism. Our prediction for the pion-photon transition form factor agrees well with data reported by the Belle Collaboration. However, in the large $Q^2$ region it deviates from the rapid growth reported by the BaBar Collaboration. Meanwhile, our result on the $pi^0rightarrow gamma^*gamma^*$ transition form factor is also consistent with other theoretical approaches and agrees with the scaling behavior predicted by perturbative QCD.

تحميل البحث