We consider entanglement entropies of finite spatial intervals in Minkowski radiation baths coupled to the eternal black hole in JT gravity, and the related problem involving free fermion BCFT in the thermofield double state. We show that the non-monotonic entropy evolution in the black hole problem precisely matches that of the free fermion theory in a high temperature limit, and the results are universal. Both exhibit rich behaviour that involves at intermediate times, an entropy saddle with an island in the former case, and in the latter a special class of disconnected OPE channels. The quantum extremal surfaces start outside the horizon, but plunge inside as time evolves, causing a characteristic, universal dip in the entropy also seen in the free fermion BCFT. Finally an entropy equilibrium is reached with a no-island saddle.