Quantifying Ultrafast Three-Dimensional Transport Using Interferometrically Enhanced Pump-Probe Microscopy


الملخص بالإنكليزية

We present a novel microscopic technique to access local transient optical constants and carrier motion in thin-film materials in three dimensions, with sub-10 nm spatial precision and sub-15 fs temporal resolution. Our experimental scheme is based on imaging a traditionally defocussed plane in an interferometrically enhanced femtosecond pump-probe microscope, combining the amplitude and phase contrast between the perturbed and unperturbed probe due to the local photoinduced complex refractive index change. We find that our experimental approach is well described by a simple optical model based on a radially averaged Gaussian photoexcitation approximation, which we benchmark using finite-difference time-domain calculations. Measurements on the organic semiconductor pentacene reveal an unexpected sub-1 ps out-of-plane motion of the correlated triplet-triplet exciton. Our approach is applicable to thin film materials in any pump-probe experiment, and holds promise for quantitative studies of three-dimensional transport in semiconductors, especially relevant to next-generation functional materials.

تحميل البحث