We study the effects of power-law long-range couplings on measurement-induced phases and transitions in tractable large-$N$ models, including a Brownian qubit model and a Brownian SYK model. In one dimension, the long-range coupling is irrelevant for $alpha>3/2$, with $alpha$ being the power-law exponent, thus the volume-law and area-law entanglement phases and the phase transition remain intact. For $alpha<3/2$ the long-range coupling becomes relevant, leading to a nontrivial dynamical exponent at the measurement-induced phase transition. More interestingly, for $alpha<1$ the entanglement pattern receives a sub-volume correction for both area-law and volume-law phases. The volume-law phase with such a sub-volume correction realizes a novel quantum error correcting code whose code distance scales as $L^{2-2alpha}$. We further extend the calculation to a quadratic SYK model, where two distinct fractal entangled phases emerge, leading to a complete phase diagram of the long-range free fermion model under monitoring.