Binary Blends of Diblock Copolymers: An Effective Route to Novel Bicontinuous Phases


الملخص بالإنكليزية

The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the plumbers nightmare phases, which are metastable for neat diblock copolymers, could be stabilized in block copolymers with designed dispersity, namely, binary blends composed of a gyroid-forming DBCP and a homopolymer-like DBCP. The spatial distribution of different monomers reveals that these two types of DBCPs are segregated such that the homopolymer-like component is localized at the nodes to relieve the packing frustration. Simultaneously, the presence of a local segregation of the two DBCPs on the AB interface regulates the interfacial curvature. These two mechanisms could act in tandem for homopolymer-like diblock copolymers with proper compositions, resulting in larger stability regions for the novel bicontinuous phases.

تحميل البحث