On Comparing and Enhancing Common Approaches to Network Community Detection


الملخص بالإنكليزية

In this work, we explore four common algorithms for community detection in networks, namely Agglomerative Hierarchical Clustering, Divisive Hierarchical Clustering (Girvan-Newman), Fastgreedy and the Louvain Method. We investigate their mechanics and compare their differences in terms of implementation and results of the clustering behavior on a standard dataset. We further propose some enhancements to these algorithms that show promising results in our evaluations, such as self-neighboring for Neighbor Matrix constructions, a deterministic slightly faster version of the Louvain Method that favors less bigger clusters and various implementation changes to the Fastgreedy algorithm.

تحميل البحث