21-cm constraints on spinning primordial black holes


الملخص بالإنكليزية

Hawking radiation from primordial black holes (PBH) can ionize and heat up neutral gas during the cosmic dark ages, leaving imprints on the global 21cm signal of neutral hydrogen. We use the global 21cm signal to constrain the abundance of spinning PBHs in mass range of $[2 times 10^{13}, 10^{18}]$ grams. We consider several extended PBH distribution models. Our results show that 21cm can set the most stringent PBH bounds in our mass window. Compared with constraints set by {it{Planck}} cosmic microwave background (CMB) data, 21-cm limits are more stringent by about two orders of magnitudes. PBHs with higher spin are typically more strongly constrained. Our 21cm constraints for the monochromatic mass distribution rule out spinless PBHs with initial mass below $1.4 times 10^{17} {rm{g}}$, whereas extreme Kerr PBHs with reduced initial spin of $a_0=0.999$ are excluded as the dominant dark matter component for masses below $6 times 10^{17} {rm{g}}$. We also derived limits for the log-normal, power-law and critical collapse distributions.

تحميل البحث