Stochastic synchronization induced by noise


الملخص بالإنكليزية

Random perturbations applied in tandem to an ensemble of oscillating objects can synchronize their motion. We study multiple copies of an arbitrary dynamical system in a stable limit cycle, described via a standard phase reduction picture. The copies differ only in their arbitrary phases $phi$. Weak, randomly-timed external impulses applied to all the copies can synchronize these phases over time. Beyond a threshold strength there is no such convergence to a common phase. Instead, using statistical sampling, we find remarkable erratic synchronization: successive impulses produce stochastic fluctuations in the phase distribution $q(phi)$, ranging from near-perfect to more random synchronization. The sampled entropies of these phase distributions themselves form a steady-state ensemble, whose average can be made arbitrarily negative by tuning the impulse strength. A stochastic dynamics model for the entropys evolution accounts for the observed exponential distribution of entropies and for the stochastic synchronization phenomenon.

تحميل البحث