Through solution of the multielectron, semi-relativistic, time-dependent Schr{o}dinger equation, we show that angular streaking produces strongly spin-polarized electrons in a noble gas. The degree of spin polarization increases with the Keldysh parameter, so that angular streaking -- ordinarily applied to investigate tunneling -- may be repurposed to generate strongly spin-polarized electron bunches. Additionally, we explore modifications of the angular streaking scheme that also enhance spin polarization.