Highly efficient nonvolatile magnetization switching and multi-level states by current in single van der Waals topological ferromagnet Fe3GeTe2


الملخص بالإنكليزية

Robust multi-level spin memory with the ability to write information electrically is a long-sought capability in spintronics, with great promise for applications. Here we achieve nonvolatile and highly energy-efficient magnetization switching in a single-material device formed of van-der-Waals topological ferromagnet Fe3GeTe2, whose magnetic information can be readily controlled by a tiny current. Furthermore, the switching current density and power dissipation are about 400 and 4000 times smaller than those of the existing spin-orbit-torque magnetic random access memory based on conventional magnet/heavy-metal systems. Most importantly, we also demonstrate multi-level states, switched by electrical current, which can dramatically enhance the information capacity density and reduce computing costs. Thus, our observations combine both high energy efficiency and large information capacity density in one device, showcasing the potential applications of the emerging field of van-der-Waals magnets in the field of spin memory and spintronics.

تحميل البحث