Power Grid Cascading Failure Mitigation by Reinforcement Learning


الملخص بالإنكليزية

This paper proposes a cascading failure mitigation strategy based on Reinforcement Learning (RL). The motivation of the Multi-Stage Cascading Failure (MSCF) problem and its connection with the challenge of climate change are introduced. The bottom-level corrective control of the MCSF problem is formulated based on DCOPF (Direct Current Optimal Power Flow). Then, to mitigate the MSCF issue by a high-level RL-based strategy, physics-informed reward, action, and state are devised. Besides, both shallow and deep neural network architectures are tested. Experiments on the IEEE 118-bus system by the proposed mitigation strategy demonstrate a promising performance in reducing system collapses.

تحميل البحث