Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases -- Part II: Entropy production and irreversibility of RG flows


الملخص بالإنكليزية

We demonstrate that the reformulation of renormalization group (RG) flow equations as non-linear heat equations has severe implications on the understanding of RG flows in general. We demonstrate by explicitly constructing an entropy function for a zero-dimensional $mathbb{Z}_2$-symmetric model that the dissipative character of generic non-linear diffusion equations is also hard-coded in the functional RG equation. This renders RG flows manifestly irreversible, revealing the semi-group property of RG transformations on the level of the flow equation itself. Additionally, we argue that the dissipative character of RG flows, its irreversibility and the entropy production during the RG flow may be linked to the existence of a so-called $mathcal{C}$-/$mathcal{A}$-function. In total, this introduces an asymmetry in the so-called RG time -- in complete analogy to the thermodynamic arrow of time -- and allows for an interpretation of infrared actions as equilibrium solutions of dissipative RG flows equations. The impossibility of resolving microphysics from macrophysics is evident in this framework. Furthermore, we directly link the irreversibility and the entropy production in RG flows to an explicit numerical entropy production, which is manifest in diffusive and non-linear partial differential equations (PDEs) and a standard mathematical tool for the analysis of PDEs. Using exactly solvable zero-dimensional $mathbb{Z}_2$-symmetric models, we explicitly compute the (numerical) entropy production related to the total variation non-increasing property of the PDE during RG flows towards the infrared limit. Finally, we discuss generalizations of our findings and relations to the $mathcal{C}$-/$mathcal{A}$-theorem as well as how our work may help to construct truncations of RG flow equations in the future, including numerically stable schemes for solving the corresponding PDEs.

تحميل البحث