We introduce an active matter model composed of sterically interacting particles which absorb resources from a substrate and move in response to resource gradients. For varied ratios of absorption rate to substrate recovery rate, we find a variety of phases including periodic waves, partial clustering, stochastic motion, and a frozen state. If passive particles are added, they can form crystalline clusters in an active fluid. This model could be implemented using colloidal systems on feedback landscapes and can provide a soft matter realization of excitable media and ecological systems.