A comparison of sports-related head accelerations with and without direct head impacts


الملخص بالإنكليزية

Concussion and repeated exposure to mild traumatic brain injury are risks for athletes in many sports. While direct head impacts are analyzed to improve the detection and awareness of head acceleration events so that an athletes brain health can be appropriately monitored and treated. However, head accelerations can also be induced by impacts with little or no head involvement. In this work we evaluated if impacts that do not involve direct head contact, such as being pushed in the torso, can be sufficient in collegiate American football to induce head accelerations comparable to direct head impacts. Datasets of impacts with and without direct head contact were collected and compared. These datasets were gathered using a state-of-the-art impact detection algorithm embedded in an instrumented mouthguard to record head kinematics. Video analysis was used to differentiate between impact types. In total, 15 impacts of each type were used in comparison, with clear video screenshots available to distinguish each impact type. Analysis of the kinematics showed that the impacts without direct head contact achieved similar levels of linear and angular accelerations during impact compared to those from direct head impacts. Finite element analyses using the median and peak kinematic signals were used to calculate maximum principal strain of the brain. Statistical analysis revealed that no significant difference was found between the two datasets based on a Bonferroni-adjusted p-value threshold of 0.017 , with the exception of peak linear acceleration. Impacts without direct head contact showed higher mean values of peak linear acceleration values of 17.6 g compared to the direct-head impact mean value of 6.1g. These results indicated that impacts other than direct head impacts could still produce meaningful kinematic loads in the head and as such should be included in athlete health monitoring.

تحميل البحث