In this paper, we prove that discrete Morse functions on digraphs are flat Witten-Morse functions and Witten complexes of transitive digraphs approach to Morse complexes. We construct a chain complex consisting of the formal linear combinations of paths which are not only critical paths of the transitive closure but also allowed elementary paths of the digraph, and prove that the homology of the new chain complex is isomorphic to the path homology. On the basis of the above results, we give the Morse inequalities on digraphs.