Lattice-driven femtosecond magnon dynamics in $alpha$-MnTe


الملخص بالإنكليزية

The light-induced femtosecond dynamics of the sublattice magnetizations in the antiferromagnetically ordered phase of the semiconductor $alpha$-MnTe is investigated theoretically as function of an external driving field. The electromagnetic field is coupled to optical modes and the concomitant atomic displacements modulate the Heisenberg exchange couplings. We derive the equations of motion for the time-dependent sublattice magnetization in spin wave theory and analyze the contributions from the driven magnon modes. The antiferromagnetic order parameter exhibits coherent longitudinal oscillations determined by the external driving frequency which decay due to dephasing. Including a phenomenological dissipative term to mimic spin-lattice relaxation processes leads to relaxation back to thermal equilibrium. We provide approximate analytic solutions of the resulting differential equations which allow us to understand the effect of the driving light pulse on the amplitude, frequency, and lifetime of the coherent spin dynamics.

تحميل البحث