Observation of many-body localization in an experimental quantum annealer


الملخص بالإنكليزية

We investigate the occurrence of the phenomenon of many-body localization (MBL) on a D-Wave 2000Q programmable quantum annealer. We study a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph, with random exchange interactions and random longitudinal fields. On this system we experimentally observe a transition from an ergodic phase to an MBL phase. We first theoretically show that the MBL transition is induced by a critical disorder strength for individual energy eigenstates in a Chimera cell, which follows from the analysis of the mean half-system block entanglement, as measured by the von Neumann entropy. We show the existence of an area law for the block entanglement over energy eigenstates for the MBL phase, which stands in contrast with an extensive volume scaling in the ergodic phase. The identification of the MBL critical point is performed via the measurement of the maximum variance of the mean block entanglement over the disorder ensemble as a function of the disorder strength. Our results for the energy density phase diagram also show the existence of a many-body mobility edge in the energy spectrum. The time-independent disordered Ising Hamiltonian is then experimentally realized by applying the reverse annealing technique allied with a pause-quench protocol on the D-Wave device. We then characterize the MBL critical point through magnetization measurements at the end of the annealing dynamics, obtaining results compatible with our theoretical predictions for the MBL transition.

تحميل البحث