We revisit the class of column competent matrices and study some matrix theoretic properties of this class. The local $w$-uniqueness of the solutions to the linear complementarity problem can be identified by the column competent matrices. We establish some new results on $w$-uniqueness properties in connection with column competent matrices. These results are significant in the context of matrix theory as well as algorithms in operations research. We prove some results in connection with locally $w$-uniqueness property of column competent matrices. Finally we establish a connection between column competent matrices and column adequate matrices with the help of degree theory.