Solution of Ordinary Differential Equation (ODE) model of dynamical system may not agree with its observed values. Often this discrepancy can be attributed to unmodeled forcings in the evolution rule of the dynamical system. In this article, an approach for data-based model improvement is described which exploits the geometric constraints imposed by the system observations to estimate these unmodeled terms. The nominal model is augmented using these extra forcing terms to make predictions. This approach is applied to navigational satellite orbit prediction to bring down the error to approximately 12% of the error when using the nominal force model for a 2-hour prediction. In another example improved temperature predictions over the nominal heat equation are obtained for one-dimensional conduction.