Ships, Splashes, and Waves on a Vast Ocean


الملخص بالإنكليزية

The simulation of large open water surface is challenging for a uniform volumetric discretization of the Navier-Stokes equation. The water splashes near moving objects, which height field methods for water waves cannot capture, necessitates high resolution simulation such as the Fluid-Implicit-Particle (FLIP) method. On the other hand, FLIP is not efficient for the long-lasting water waves that propagates to long distances, which requires sufficient depth for correct dispersion relationship. This paper presents a new method to tackle this dilemma through an efficient hybridization of volumetric and surface-based advection-projection discretizations. We design a hybrid time-stepping algorithm that combines a FLIP domain and an adaptively remeshed Boundary Element Method (BEM) domain for the incompressible Euler equations. The resulting framework captures the detailed water splashes near moving objects with FLIP, and produces convincing water waves with correct dispersion relationship at modest additional cost.

تحميل البحث