In this work, we propose and study the stability of nerve impulse propagation as electrical and mechanical signals through linear approximation. We present a potential energy stored in the biomembrane due to the deformation, bending, and stretching as the action potential propagates in the nerve fibre. From the potential energy, we derive electromechanical coupling forces and an attempt is made to unify the two models to account for both the electrical and mechanical activities of nerve signal propagation by introducing the electromechanical coupling forces. We examine the stability of the equilibrium states of the electromechanical model for nerves through the Routh Hurwitz stability criteria. Finally, we present results of the numerical simulations of the electromechanical model for nerves through Runge Kutta method of order four.