The origin and the physical properties of dark matter remain unknown to date and their discovery is one of the most challenging topics in contemporary physics. One possible, prominent option is scalar field dark matter. In particular, low-mass (sub-eV) scalar field dark matter may induce apparent oscillations of fundamental constants, resulting in corresponding oscillations of the size and the index of refraction of solids. Laser interferometers are highly sensitive to changes in the size and index of refraction of the main beamsplitter. Using the data of the Fermilab Holometer instrument, which consists of twin co-located 40-m arm length power-recycled interferometers built to test quantum gravity theories, we investigate the possible existence of scalar field dark matter candidates in the mass range between 4.1$cdot$10$^{-9}$ eV and 10$^{-7}$ eV. We set new upper limits for the coupling parameters of scalar field dark matter, improving on limits from previous direct searches by up to one order of magnitude.