Material-structure integrated design for ultra-broadband microwave metamaterial absorber


الملخص بالإنكليزية

We propose herein a method of material-structure integrated design for broadband absorption of dielectric metamaterial, which is achieved by combination of genetic algorithm and simulation platform. A multi-layered metamaterial absorber with an ultra-broadband absorption from 5.3 to 18 GHz (a relative bandwidth of as high as 109%) is realized numerically and experimentally. In addition, simulated results demonstrate the proposed metamaterial exhibits good incident angle and polarization tolerance, which also are significant criteria for practical applications. By investigating the working principle with theoretical calculation and numerical simulation, it can be found that merging of multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode is responsible for a remarkable ultra-broadband absorption. Analysis of respective contribution of material and structure indicates that either of them plays an indispensable role in activating different resonance modes, and symphony of material and structure is essential to afford desirable target performance. The material-structure integrated design philosophy highlights the superiority of coupling material and structure and provides an effective comprehensive optimization strategy for dielectric metamaterials.

تحميل البحث