Decentralized optimization and communication compression have exhibited their great potential in accelerating distributed machine learning by mitigating the communication bottleneck in practice. While existing decentralized algorithms with communication compression mostly focus on the problems with only smooth components, we study the decentralized stochastic composite optimization problem with a potentially non-smooth component. A underline{Prox}imal gradient underline{L}inunderline{EA}r convergent underline{D}ecentralized algorithm with compression, Prox-LEAD, is proposed with rigorous theoretical analyses in the general stochastic setting and the finite-sum setting. Our theorems indicate that Prox-LEAD works with arbitrary compression precision, and it tremendously reduces the communication cost almost for free. The superiorities of the proposed algorithms are demonstrated through the comparison with state-of-the-art algorithms in terms of convergence complexities and numerical experiments. Our algorithmic framework also generally enlightens the compressed communication on other primal-dual algorithms by reducing the impact of inexact iterations, which might be of independent interest.