We investigate the chirality of phonon modes in twisted bilayer WSe2. We demonstrate distinct chiral behavior of the K/K valley phonon modes for twist angles close to 0 degrees and close to 60 degrees. Moreover, we discover two sets of well-separated chiral valley modes in moire lattices for angles close to 60 degrees. These emergent moire chiral valley phonons originate from inversion symmetry breaking at the moire scale. We also find similar emergent chiral modes in moire patterns of strain-engineered bilayer WSe2 and MoSe2/WSe2 heterostructure. Furthermore, we observe the flattening of bands near the phononic band-gap edges for a broad range of twist angles in twisted bilayer WSe2. Our findings, which are expected to be generic for moire systems composed of two-dimensional materials that break inversion symmetry, are relevant for understanding electron-phonon and exciton-phonon scattering, and for designing phononic crystals to mimic behaviors of electrons in moire materials.