CRAFT (Cosmic Ray Acceleration From Turbulence) in Molecular Clouds


الملخص بالإنكليزية

Low-energy cosmic rays, in particular protons with energies below 1 GeV, are significant drivers of the thermochemistry of molecular clouds. However, these cosmic rays are also greatly impacted by energy losses and magnetic field transport effects in molecular gas. Explaining cosmic ray ionization rates of $10^{-16}$ s$^{-1}$ or greater in dense gas requires either a high external cosmic ray flux, or local sources of MeV-GeV cosmic ray protons. We present a new local source of low-energy cosmic rays in molecular clouds: first order Fermi-acceleration of protons in regions undergoing turbulent reconnection in molecular clouds. We show from energetic-based arguments there is sufficient energy within the magneto-hydrodynamic turbulent cascade to produce ionization rates compatible with inferred ionization rates in molecular clouds. As turbulent reconnection is a volume-filling process, the proposed mechanism can produce a near-homogeneous distribution of low-energy cosmic rays within molecular clouds.

تحميل البحث