The Kuznetsov component $mathcal{K}u(X)$ of a Gushel--Mukai (GM) threefold has two numerical $(-1)$-classes with respect to the Euler form. We describe the Bridgeland moduli spaces for stability conditions on Kuznetsov components with respect to each of the $(-1)$-classes and prove refined and birational categorical Torelli theorems in terms of $mathcal{K}u(X)$. We also prove a categorical Torelli theorem for special GM threefolds. We study the smoothness and singularities on Bridgeland moduli spaces for all smooth GM threefolds and use this to prove a conjecture of Kuznetsov--Perry in dimension three under a mild assumption. Finally, we use our moduli spaces to restate a conjecture of Debarre--Iliev--Manivel regarding fibers of the period map for ordinary GM threefolds. We also prove the restatement of this conjecture infinitesimally using Hochschild (co)homology.