Generalized splines on graphs with two labels and polynomial splines on cycles


الملخص بالإنكليزية

A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $R$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the edge-labelings consist of at most two finitely-generated ideals, and $2)$ for cycles when the edge-labelings consist of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $mathbb{C}[x,y]$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in classical (analytic) splines.

تحميل البحث