Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice


الملخص بالإنكليزية

Establishing the nature of the ground state of the Heisenberg antiferromagnet (HAFM) on the kagome lattice is well known to be a prohibitively difficult problem for classical computers. Here, we give a detailed proposal for a Variational Quantum Eigensolver (VQE) with the aim of solving this physical problem on a quantum computer. At the same time, this VQE constitutes an explicit proposal for showing a useful quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices because of its natural hardware compatibility. We classically emulate a noiseless quantum computer with the connectivity of a 2D square lattice and show how the ground state energy of a 20-site patch of the kagome HAFM, as found by the VQE, approaches the true ground state energy exponentially as a function of the circuit depth. Besides indicating the potential of quantum computers to solve for the ground state of the kagome HAFM, the classical emulation of the VQE serves as a benchmark for real quantum devices on the way towards a useful quantum advantage.

تحميل البحث