Quantum phases in f-Electron Systems


الملخص بالإنكليزية

Quantum fluctuations and related phase transitions are of current interest from the viewpoint of fundamental physics and technological applications. Quantum phase implies a region where the quantum fluctuations of energy scale $hbaromega$ dominates over the thermal energy $k_B$T. Presence of quantum phase leads to unconventional and unexpected physical phenomena like Kondo effect, non-Fermi liquids, ordered magnetic state, and Fermi liquids, etc. In this framework, Ce-based metallic compounds, exhibiting correlated electron phenomena, emerged as prototypical systems to study the various quantum phases. In these systems considerable efforts have been made, both experimentally and theoretically, to overcome the problems related to the comprehensive understanding of correlated quantum phases. In this article, various aspects related to quantum phases in CeNiGe2, CeGe and CeAlGe are summarized, mainly focusing on the structural and physical properties.

تحميل البحث