Exploration of the solar system and beyond using a thermonuclear fusion drive


الملخص بالإنكليزية

It is demonstrated that the development of a nuclear fusion rocket engine based on a D $-$ $^{3}$He (Deterium-Helium 3) technology will allow to travel in the solar system and beyond. The Direct Fusion Drive (DFD) is the D $-$ $^{3}$He-fueled, aneutronic, thermonuclear fusion propulsion system that is under development at Princeton University Plasma Physics Laboratory [1]. It is considered and analyzed the Earth-Mars mission using the DFD. It is shown that one-way trips to Mars in slightly more than 100 days become possible and also journeys to the asteroid belt will take about 250 days [2]. It is presented an analysis of realistic new trajectories for a robotic mission to Saturns largest moon, Titan, to demonstrate the great advantages related to the thermonuclear DFD. The trajectories calculations and analysis for Saturns largest moon Titan different profile missions are given based on the characteristics of a 2 MW class DFD engine. This capability results in a total trip duration of 2.6 years for the thrust-coast-thrust profile and less than 2 years for the continuous thrust profile [3]. Using the same 2 MW class DFD engine one can reach some trans-Neptunian object, such as the dwarf planets Makemake, Eris, and Haumea in less than 10 years with a payload mass of at least 1500 kg, so that it would enable all kind of missions, from scientific observation to in-situ operations [4]. We consider for each mission a Thrust-Coast-Thrust profile. For this reason, each mission is divided into 3 phases: i. the trajectory to escape Earth gravity influence; ii. the interplanetary travel, from the exit of Earth sphere of influence to the end of the coasting phase; iii. maneuvers to rendezvous with a target object. We present calculations to reach a vicinity at 125 AU.

تحميل البحث