Scattering strings off quantum extremal surfaces


الملخص بالإنكليزية

We consider a Hayden & Preskill like setup for both maximally chaotic and sub-maximally chaotic quantum field theories. We act on the vacuum with an operator in a Rindler like wedge $R$ and transfer a small subregion $I$ of $R$ to the other wedge. The chaotic scrambling dynamics of the QFT Rindler time evolution reveals the information in the other wedge. The holographic dual of this process involves a particle excitation falling into the bulk and crossing into the entanglement wedge of the complement to $r=R backslash I$. With the goal of studying the locality of the emergent holographic theory we compute various quantum information measures on the boundary that tell us when the particle has entered this entanglement wedge. In a maximally chaotic theory, these measures indicate a sharp transition where the particle enters the wedge exactly when the insertion is null separated from the quantum extremal surface for $r$. For sub-maximally chaotic theories, we find a smoothed crossover at a delayed time given in terms of the smaller Lyapunov exponent and dependent on the time-smearing scale of the probe excitation. The information quantities that we consider include the full vacuum modular energy $R backslash I$ as well as the fidelity between the state with the particle and the state without. Along the way, we find a new explicit formula for the modular Hamiltonian of two intervals in an arbitrary 1+1 dimensional CFT to leading order in the small cross ratio limit. We also give an explicit calculation of the Regge limit of the modular flowed chaos correlator and find examples which do not saturate the modular chaos bound. Finally, we discuss the extent to which our results reveal properties of the target of the probe excitation as a ``stringy quantum extremal surface or simply quantify the probe itself thus giving a new approach to studying the notion of longitudinal string spreading.

تحميل البحث