Polynomials Associated to Integer Partitions


الملخص بالإنكليزية

Integer partitions express the different ways that a positive integer may be written as a sum of other positive integers. Here we explore the analytic properties of a polynomial $f_lambda(x)$ that we call the partition polynomial for the partition $lambda$, with the hope of learning new properties of partitions. We prove a recursive formula for the derivatives of $f_lambda(x)$ involving Stirling numbers of the second kind, show that the set of integrals from 0 to 1 of a normalized version of $f_lambda(x)$ is dense in $[0,1/2]$, pose a few open questions, and formulate a conjecture relating the integral to the length of the partition. We also provide specific examples throughout to support our speculation that an in-depth analysis of partition polynomials could further strengthen our understanding of partitions.

تحميل البحث