In this paper, we propose a combined approach with second-order optimality conditions of the lower level problem to study constraint qualifications and optimality conditions for bilevel programming problems. The new method is inspired by the combined approach developed by Ye and Zhu in 2010, where the authors combined the classical first-order and the value function approaches to derive new necessary optimality conditions under weaker conditions. In our approach, we add the second-order optimality condition to the combined program as a new constraint. We show that when all known approaches fail, adding the second-order optimality condition as a constraint makes the corresponding partial calmness condition easier to hold. We also give some discussions on optimality conditions and advantages and disadvantages of the combined approaches with the first-order and the second-order information.