We present a detailed study of the emergence of bulk ferromagnetism in low carrier density samples of undoped indium tin oxide (ITO). We used annealing to increase the density of oxygen vacancies and change sample morphology without introducing impurities through the metal insulator transition (MIT). We utilized a novel and highly sensitive Corbino-disk torque magnetometry technique to simultaneously measure the thermodynamic and transport effects of magnetism on the same sample after successive annealing. With increased sample granularity, carrier density increased, the sample became more metallic, and ferromagnetism appeared as resistance approached the MIT. Ferromagnetism was observed through the detection of magnetization hysteresis, anomalous Hall effect (AHE), and hysteretic magnetoresistance. A sign change of the AHE as the MIT is approached may elucidate the interplay between the impurity band and the conduction band in the weakly insulating side of the MIT.