The computational vision community has recently paid attention to continual learning for blind image quality assessment (BIQA). The primary challenge is to combat catastrophic forgetting of previously-seen IQA datasets (i.e., tasks). In this paper, we present a simple yet effective continual learning method for BIQA with improved quality prediction accuracy, plasticity-stability trade-off, and task-order/length robustness. The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability, and learn task-specific normalization parameters for plasticity. We assign each new task a prediction head, and load the corresponding normalization parameters to produce a quality score. The final quality estimate is computed by feature fusion and adaptive weighting using hierarchical representations, without leveraging the test-time oracle. Extensive experiments on six IQA datasets demonstrate the advantages of the proposed method in comparison to previous training techniques for BIQA.