On the Scheduling and Power Control for Uplink Cellular-Connected UAV Communications


الملخص بالإنكليزية

Cellular connected unmanned aerial vehicle (UAV) has been identified as a promising paradigm and attracted a surge of research interest recently. Although the nearly line-of-sight (LoS) channels are favorable to receive higher powers, UAV can in turn cause severe interference to each other and to any other users in the same frequency band. In this contribution, we focus on the uplink communications of cellular-connected UAV. To cope with the severe interference among UAV-UEs, several different scheduling and power control algorithms are proposed to optimize the spectrum efficiency (SE) based on the geometrical programming (GP) principle together with the successive convex approximation (SCA) technique. The proposed schemes include maximizing the sum SE of UAVs, maximizing the minimum SE of UAVs, etc., applied in the frequency domain and/or the time domain. Moreover, the quality of service (QoS) constraint and the uplink single-carrier (SC) constraint are also considered. The performances of these power and resource allocation algorithms are evaluated via extensive simulations in both full buffer transmission mode and bursty traffic mode. Numerical results show that the proposed algorithms can effectively enhance the uplink SEs of cellular-connected UAVs.

تحميل البحث