Engineered Raman Lasing in Photonic Integrated Chalcogenide Microresonators


الملخص بالإنكليزية

Chalcogenide glass (ChG) is an attractive material for integrated nonlinear photonics due to its wide transparency and high nonlinearity, and its capability of being directly deposited and patterned on Silicon wafer substrates. It has a singular Raman effect among amorphous materials. Yet, the Raman lasing performance in high quality and chip integrated ChG microresonators remains unexplored. Here, we demonstrate an engineered Raman lasing dynamic based on home developed photonic integrated high-Q ChG microresonators. With a quality factor above 10^6, we achieve the record-low lasing threshold 3.25 mW among integrated planar photonic platforms. Both the single-mode Raman lasers and a broadband Raman-Kerr comb are observed and characterized, which is dependent on the dispersion of our flexible photonic platform and engineered via tuning the waveguide geometric size. The tunability of such a chipscale Raman laser is also demonstrated through tuning the pump wavelength and tuning the operating temperature on the chip. This allows for the access of single-mode lasing at arbitrary wavelengths in the range 1615-1755 nm. Our results may contribute to the understanding of rich Raman and Kerr nonlinear interactions in dissipative and nonlinear microresonators, and on application aspect, may pave a way to chip-scale efficient Raman lasers that is highly desired in spectroscopic applications in the infrared.

تحميل البحث