Early dark energy in the pre- and post-recombination epochs


الملخص بالإنكليزية

Many quintessence models possess scaling or attractor solutions where the fraction of dark energy follows the dominant component in previous epochs of the expansion, or phase transitions may happen close to matter-radiation equality time. A non-negligible early dark energy (EDE) fraction around matter-radiation equality could contribute to alleviate the $H_0$ tension. We constrain the EDE fraction using two approaches: first, we use a fluid parameterization that mimics the plateaux of the dominant components in the past. An alternative tomographic approach constrains the EDE density in binned redshift intervals. This allows us to reconstruct $Omega_{de}(z)$ before and after the decoupling of the CMB photons. We have employed Planck data 2018, the Pantheon supernovae of Type Ia (SNIa), galaxy clustering data, the prior on the absolute magnitude of SNIa by SH0ES, and weak lensing (WL) data from KiDS+VIKING-450 and DES-Y1. When we use a minimal parameterization mimicking the background plateaux, EDE has only a small impact on current cosmological tensions. The constraints on the EDE fraction weaken considerably when its sound speed is allowed to vary. By means of our binned analysis we put very tight constraints on the EDE fraction around the CMB decoupling time, $lesssim 0.4%$ at $2sigma$ c.l. We confirm previous results that a significant EDE fraction in the radiation-dominated epoch (RDE) loosens the $H_0$ tension, but tends to worsen the $sigma_8$ one. The presence of EDE in the matter-dominated era helps to alleviate this issue. When the SH0ES prior and WL data are considered in the fitting analysis in combination with data from CMB, SNIa and baryon acoustic oscillations, the EDE fractions are constrained to be $lesssim 2.6%$ in the RDE epoch and $lesssim 1.5%$ in the redshift range $zin (100,1000)$ at $2sigma$ c.l. The tensions remain at $sim 2-3sigma$ c.l.

تحميل البحث