A combinatorial proof of a sumset conjecture of Furstenberg


الملخص بالإنكليزية

We give a new proof of a sumset conjecture of Furstenberg that was first proved by Hochman and Shmerkin in 2012: if $log r / log s$ is irrational and $X$ and $Y$ are $times r$- and $times s$-invariant subsets of $[0,1]$, respectively, then $dim_text{H} (X+Y) = min ( 1, dim_text{H} X + dim_text{H} Y)$. Our main result yields information on the size of the sumset $lambda X + eta Y$ uniformly across a compact set of parameters at fixed scales. The proof is combinatorial and avoids the machinery of local entropy averages and CP-processes, relying instead on a quantitative, discrete Marstrand projection theorem and a subtree regularity theorem that may be of independent interest.

تحميل البحث