Nearly room temperature ferromagnetism in pressure-induced correlated metallic state of van der Waals insulator CrGeTe$_3$


الملخص بالإنكليزية

A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hunds coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe$_3$, that provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few layers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of CrGeTe$_3$ single crystal using pressure. With application of pressure, CrGeTe$_3$ transforms from a FM insulator with Curie temperature, $T_{rm{C}} sim $ 66 K at ambient condition to a correlated 2D Fermi metal with $T_{rm{C}}$ exceeding $sim$ 250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states are driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material.

تحميل البحث