The fundamental theorem of affine geometry in regular $L^0$-modules


الملخص بالإنكليزية

Let $(Omega,{mathcal F},P)$ be a probability space and $L^0({mathcal F})$ the algebra of equivalence classes of real-valued random variables defined on $(Omega,{mathcal F},P)$. A left module $M$ over the algebra $L^0({mathcal F})$(briefly, an $L^0({mathcal F})$-module) is said to be regular if $x=y$ for any given two elements $x$ and $y$ in $M$ such that there exists a countable partition ${A_n,nin mathbb N}$ of $Omega$ to $mathcal F$ such that ${tilde I}_{A_n}cdot x={tilde I}_{A_n}cdot y$ for each $nin mathbb N$, where $I_{A_n}$ is the characteristic function of $A_n$ and ${tilde I}_{A_n}$ its equivalence class. The purpose of this paper is to establish the fundamental theorem of affine geometry in regular $L^0({mathcal F})$-modules: let $V$ and $V^prime$ be two regular $L^0({mathcal F})$-modules such that $V$ contains a free $L^0({mathcal F})$-submodule of rank $2$, if $T:Vto V^prime$ is stable and invertible and maps each $L^0$-line segment onto an $L^0$-line segment, then $T$ must be $L^0$-affine.

تحميل البحث