Electric power grids are critical infrastructure that support modern society by supplying electric energy to critical infrastructure systems. Incidents are increasing that range from natural disasters to cyber attacks. These incidents threaten the reliability of power systems and create disturbances that affect the whole society. While existing standards and technologies are being applied to proactively improve power system reliability and resilience, there are still widespread electricity outages that cause billions of dollars in economic loss annually and threaten societal function and safety. Improving resilience in preparation for such events warrants strategic network design to harden the system. This paper presents an approach to strengthen power system security and reliability against disturbances by expanding the network structure from an ecosystems perspective. Ecosystems have survived a wide range of disturbances over a long time period, and an ecosystems robust structure has been identified as the key element for its survivability. In this paper, we first present a study of the correlation of ecological robustness and power system structures. Then, we present a mixed-integer nonlinear programming problem (MINLP) that expands the transmission network structure to maximize ecological robustness with power system constraints for an improved ability to absorb disturbances. We solve the MINLP problem for the IEEE 24 Bus Reliability Test System and three synthetic power grids with 200-, 500- and 2000-buses, respectively. Our evaluation results show the optimized power systems have increased the networks robustness, more equally distributed power flows, and less violations under different levels of contingencies.