In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets takes analogy to two massive particles colliding via attraction. Due to mutual attraction, the penetration of spin wave packet leads to backward displacement of the domain wall, and further the penetration of continuous spin wave leads to constant velocity of domain wall. The underlying temporary exchange of momentum, instead of permanent transfer of linear and angular momenta, provides a new paradigm in magnonically driving domain wall.